
Implications of a PIM Architectural Model for MPI
�

Arun Rodrigues� Richard Murphy� Peter Kogge� Jay Brockman� Ron Brightwell
�

Keith Underwood
�

University of Notre Dame� Sandia National Lab � �
Computer Science and Engineering Department PO Box 5800

384 Fitzpatrick Hall MS-1110
Notre Dame, IN 46545 Albuquerque, NM 87185-1110

E-mail: � arodrig6,rcm,kogge,jbb � @cse.nd.edu, � rbbrigh, kdunder � @sandia.gov

Abstract

Memory may be the only system component that is more
commoditized than a microprocessor. To simultaneously ex-
ploit this and address the impending memory wall, pro-
cessing in memory (PIM) research efforts are consider-
ing ways to move processing into memory without signif-
icantly increasing the cost of the memory. As such, PIM
devices may become the basis for future commodity clus-
ters. Although these PIM devices may leverage new com-
putational paradigms such as hardware support for mul-
tithreading and traveling threads, they must provide sup-
port for legacy programming models if they are to supplant
commodity clusters. This paper presents a prototype imple-
mentation of MPI over a traveling thread mechanism called
parcels. A performance analysis indicates that the direct
hardware support of a traveling thread model can lead to
an efficient, lightweight MPI implementation.

1. Introduction

With the memory wall looming for traditional micropro-
cessors, there is a variety of efforts underway to determine
how best to avoid it. One active area of research is process-
ing in memory (PIM) technology. The PIM approach in-
tegrates processors in the memory device. The advantages
are a dramatic increase in memory bandwidth and a signifi-
cant decrease in memory latency. Many researchers believe
that these devices can be built with a large impact on overall

� The bulk of the work described here was done at Sandia National Labs.
The PIM concepts were funded by JPL under the HTMT project, by
DARPA under the DIVA project, and by DARPA through Cray Inc. as
part of the HPCS program.

� Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of En-
ergy under contract DE-AC04-94AL85000.

system performance with relatively modest changes to sys-
tem cost. This is particularly true if the underlying mem-
ory technology is the same DRAM technology that is at the
heart of the commodity memory market. Mass market ap-
plications for such a commodity DRAM PIM range from
systems-on-a-chip, as in a cell phone or PDA, to the mem-
ory or entire node in a system architecture for future com-
modity clusters. As such it has the mass-market potential
to exceed the volumes of the current microprocessor mar-
ket, and thus influence the design of next-generation micro-
processors and memory systems. Thus, PIMs have the po-
tential to form the basis of future commodity clusters.

One approach to PIM technologies is to architect the
PIM device specifically for parallel computing. This seems
counter to the possibility that such devices would be used in
cell phones; however, most PIM approaches are considering
multiple processors per DRAM device. Thus, the only dif-
ference is that the multiprocessing capabilities would need
to be extended across multiple chips. Indeed, some PIM re-
searchers believe that single chip and massively parallel sys-
tems should use the same parallelism mechanisms. Multi-
threading and traveling threads (based on parcels) are two of
the techniques that are being proposed as parallelism mech-
anisms. In architectures such as PIM Lite[6] or MIND[37],
hardware support will be provided to switch between multi-
ple threads in a single cycle. More interestingly, the commu-
nication mechanism, known as parcels, will contain thread
state to allow extremely lightweight remote invocation (or
migration) of threads.

Achieving maximum performance from PIM based sys-
tems may require a change from the message passing model
that is widespread today; however, it is critically important
that PIM based systems provide reasonable performance on
current codes. This paper discusses a prototype implemen-
tation of MPI using traveling threads. The prototype imple-
mentation contains a minimal number of commonly used
operations, but it serves as a platform to evaluate MPI im-

plementation issues on PIMs. Initial analysis of this proto-
type has yielded some interesting results.

The remainder of this paper is organized as follows. The
PIM computational model used for this work is presented
in Section 2. This is followed by details of the MPI imple-
mentation for this model in Section 3. The evaluation meth-
ods used are discussed in Section 4, and some preliminary
results are shown in Section 5. Section 6 presents a compar-
ison to related work. Finally, conclusions and future work
are presented in Sections 7 and 8.

2. Processing-In-Memory

Processing-In-Memory (PIM) [19, 20, 7, 30, 29, 28, 37,
18, 36, 8, 11, 10], also known as Intelligent RAM[34], em-
bedded RAM, or merged logic and memory, combines both
high speed logic and dense DRAM on the same die, thus ex-
ploiting the tremendous amounts of available on-chip band-
width, and providing low latency access to a relatively large
amount of local state. This serves to circumvent the von
Neumann bottleneck, locally, and provides a unique chal-
lenge to the designer of large scale PIM systems. Specifi-
cally, there are a large number of processing resources avail-
able with high bandwidth, low latency access to their local
memory. However, off-chip accesses suffer from the same
high-latency, low-bandwidth problems that all modern par-
allel machines suffer, except that the pins that were pre-
viously wasted on caches and memory interfaces to dumb
commodity DRAM can now be used for direct PIM to PIM
communication, and can be designed to run at higher sig-
naling rates as a result.. In the case of PIM, the disparity be-
tween these two types of memory access (local and remote)
is significantly greater than other systems. Furthermore, be-
cause the systems under consideration consist of hundreds
of thousands (to millions) of nodes, providing a petabyte or
more of physical memory, the need for a simple, low over-
head communication mechanism is paramount.

2.1. The Parcel Interface

The nodes communicate via the parcel (PARallel Com-
munication ELement) interface [20, 36]. Parcels are mes-
sages possessing intrinsic meaning which are directed at
named objects, somewhat similar to active messages [39].
Rather than merely serving as a repository for data, they
carry distinct high-level commands and some of the ar-
guments necessary to fulfill those commands. Low level
parcels (which may be entirely handled by hardware) may
contain simple memory requests such as: “access the value�

and return it to node � ”. Higher level parcels are much
more complicated. An example might be “begin execution
of procedure 	 with the following arguments and return
the result to node
 ”. A parcel is capable of performing

both communication and computation, and it may be gener-
ated by the user, run-time system, or hardware for whatever
mechanism may be appropriate. Fundamentally, traveling
thread parcels may also represent a thread continuation[17],
and the memory system is capable of quickly relocating
threads (via the parcel interface) implicitly, based on the
memory addresses that a thread accesses, or explicitly, via
a migrate request.

2.2. Traveling Threads

The Traveling Thread model of computation [29, 30,
28, 21] directly addresses the requirement for low-overhead
support to co-locate computation and its required data by
allowing extremely light weight threads to move between
processing resources and consume the available local data
without explicit programmer intervention. The parcel-based
model of computation introduced the ability to remotely
initiate threads at a memory node containing some data
relevant to the computation being performed[36, 20, 7],
and provides support for very fine grain determination of
data locality, but required the programmer (or compiler)
to control thread movement via remote method invocations
(RMIs). The Microserver model minimizes the total amount
of state transferred between nodes, but generally, the pro-
grammer (or compiler) explicitly identifies and transfers the
intermediate state of the computation. (It should be noted
that if the code is written in an object oriented fashion,
automatic identification of the intermediate state is signif-
icantly easier.) In effect, computation occurs as a series of
remote method invocations, each of which performs com-
putation local to the PIM upon which it is running. Differ-
ent degrees of thread state may be implemented on top of
this model, from arguments to a procedure call to the au-
tomatic caching of the associated thread state[29]. Further-
more, different types of threads may be remotely invoked,
ranging from an SPMD program, through the instantiation
of a method, to position-aware traveling threads that ex-
plicitly move from PIM-to-PIM as its data needs change.
For an MPI library writer, the encapsulation of state associ-
ated with traveling threads helps to reduce the complexity
of state-full checks inside the library.

Traveling threads eliminate the logical overhead associ-
ated with maintaining coherency information among shared
pieces of data, while simultaneously potentially reducing
the physical (latency) overhead by converting two-way (re-
mote data request) transactions into one-way (thread mi-
gration) transactions. Unlike traditional thread implemen-
tations, the spectrum of threads available on this class of
PIM systems is extraordinarily light weight. A lightweight
thread example could be the C statement, �� ������� which
could be a thread that moves to memory location ���� ��� and
increments the data there. Were that location a remote PIM,

W
ID

E
 W

O
R

D
 V

E
C

T
O

R
 U

N
IT

M
E

M
O

R
Y

 M
A

C
R

O

R
O

W
D

E
C

O
D

E
R

R
O

W

SE
N

SE
 A

M
PL

IFIE
R

S

O
PE

N
 R

O
W

 R
E

G
IST

E
R

 (2K
−bits)

C
O

L
U

M
N

 D
E

C
O

D
E

R

C
O

L
U

M
N

R
E

Q
U

E
ST

E
D

 V
A

L
U

E
 (W

ID
E

 W
O

R
D

)
IN

C
O

M
IN

G
A

D
D

R
E

SS

(W
O

R
D

 L
IN

E
)

 (B
IT

 L
IN

E
)

FR
A

M
E

 C
A

C
H

E

IN
T

E
G

R
A

T
E

D
 SC

A
L

A
R

 A
N

D

Figure 1: Typical PIM Node Architecture

and the contents of ��� ��� unneeded in the next step of com-
putation, a single, one-way traveling thread could be dis-
patched to perform the increment. These threads are partic-
ularly useful for scientific and data intensive codes which
stream through memory quickly and show little temporal
reuse. In the case of the simple example given above, � rep-
resents a large, shared global data structure, and � a piece of
local state generated in the loop that’s required to carry out
the trivial thread increment operation.

2.3. PIM Lite: A Typical PIM Node and Memory
Layout

Figure 1 shows the typical layout of a PIM typified by
the PIM Lite[6] or MIND[37] architectures. The process-
ing resource are pitch-matched to the memory, providing
scalar or short vector processing for a wide word (typically
256-bits) of data read directly from the open row register of
one or more memory macros. Each PIM node provides pro-
cessing from its local memory in this fashion. The simu-
lated PIM nodes in this work reflect the PIM Lite architec-
ture. (It should be noted that multiple PIM nodes may ap-
pear on a given PIM chip).

PIM Lite and the PIM execution model used in this

work support a multithreaded execution model that is heav-
ily influenced by the early work in hybrid dataflow ar-
chitectures including P-RISC [31] and Monsoon [33], as
well as the Threaded Abstract Machine (TAM) [14, 13].
The lightweight messaging was also inspired by protocols
developed for split-phase memory access in the dataflow
work, as well as active messages [40], the MDP, [15] and J-
Machine [32]. This prior work has been extended by adapt-
ing lightweight multithreading and communication for use
with wide-words from on-chip memory and also integrates
short SIMD operations into the architecture.

A PIM node consists of a block of physical memory with
an associated processor. A collection of nodes intercon-
nected on a network (independent of chip boundaries) is a
fabric. Externally, the fabric appears as a single, physically-
addressable memory system. Internally it operates as a dis-
tributed shared-memory multiprocessor, where each node
can host multiple threads of execution from a single pro-
cess, and each thread sees the same global shared address
space.

In PIM Lite, nearly all the state information of a thread
is taken out of the CPU and kept in memory at all times. In
place of named registers in the CPU, thread state is pack-
aged in data frames of memory. Logically, a frame is sim-
ply a region of contiguous memory locations within a sin-
gle node. Physically a frame consists of one or more rows in
a memory block. In PIM Lite, frames have a fixed size of 4
wide-words or 32 16-bit words, comparable to the size of a
typical RISC register file. With the use of frames, virtually
all instructions become operations on “memory” locations,
expressed as operations on values within a single frame, be-
tween global memory and a frame, or between two frames.
The frame cache allows fast access to this information, sim-
ilar to a register file in a modern microprocessor. Unlike
PIM Lite, the simulated PIM architecture provides a tradi-
tional RISC register file for each thread.

The execution state of a thread in the PIM Lite proces-
sor is completely described by two pointer values: a frame
pointer, FP, which points to the starting location of the
data frame, and an instruction pointer IP that points to
the current instruction. Bundled together, the pair of val-
ues <FP.IP> is called a continuation, is the same sense
as [33], and forms the basic unit of execution in PIM Lite.
In the PIM Lite architecture, a thread pool stores continua-
tions that are ready for execution. During an instruction cy-
cle, a single continuation is removed from the pool and pro-
cessed, and 0, 1, or 2 continuations are written back to the
pool. The pool may contain multiple continuations with the
same frame pointer value FP, meaning that multiple threads
of execution can share values through a common frame. In
the PIM Lite-0 chip implementation, a hardware scheduling
mechanism ensures that two continuations with a common
FP will never be in the pipeline at the same time, eliminat-

ing the need for hazard detection or forwarding logic in the
pipeline. The simulations in this work support a more com-
plex continuation model, including local stack data. In this
work, all synchronization operations occur through mem-
ory (as each thread’s local registers cannot be shared), but
the fundamental continuation and scheduling mechanisms
are the same.

It should be noted that the on-chip memory is not the
only memory potentially available to a PIM. A configura-
tion in which PIMs are backed by DRAM offers several ad-
vantages: the amount of local state available to each node
increases (though the latency to the off-chip memory is rel-
atively high); the total memory bandwidth of the system
is tremendously increased (given that each PIM node can
access local DRAM and can serve as a bandwidth multi-
plier for the remaining nodes in the system accessing that
data); and the memory hierarchy supports an intermediate
access (as local off-chip memory will be closer than remote
memory). The use of local off-chip memory does not de-
tract from the inherent advantages of PIM: large, low la-
tency, high bandwidth local memory.

2.4. Multithreading

The PIM execution model used throughout this work is,
fundamentally, multithreaded. To maximize the amount of
on-chip area available for DRAM, the processing logic is
intentionally kept very simple (relatively short pipelines, in
order execution, and no branch prediction) and because the
DRAM access time is relatively quick – ������� �"!$# for a ran-
dom address access, or a single clock cycle for addresses
already in the DRAM’s open row buffer – there is no need
for local caching. Multithreading is used to tolerate these
local latencies. However, PIM threads are significantly less
heavyweight than those seen in modern SMTs (such as mul-
tithreaded versions of the PowerPC[4], or hyperthreaded In-
tel processors[24]) or even more heavily multithreaded ar-
chitectures such as the Cray(/Tera) MTA[1].

The execution model supports a wide spectrum of
threads, including:

1. Threadlets: which are very tiny operations requir-
ing extremely small state to represent (on the order
of a cache line in a modern processor). For exam-
ple: if(condition[i]) counter[i]++;
could produce a small thread to be sent to the PIM
that holds counter[i] requiring that it be incre-
mented.

2. Dispatched Threads: representing more significant
computations (which potentially require more state),
such as scatter/gather operations.

3. Traditional RPCs or Remote Method Invocations:
which represent a request for a remote object to per-
form an operation (via proxy).

4. Heavyweight Threads: which represent larger, more
traditional threads, such as an iteration of an SPMD
program loop.

Exploiting this mix of threads is particularly important to
the library writer because these are the lightest weight
mechanisms for performing communication on the given
PIM architecture.

The architectural support for multi-threading is provided
via a simple hardware mechanism, the thread pool, which
holds the local thread state (very much like a register
file), and allows the hardware to schedule from among the
threads in the pool, potentially issuing an instruction from
a different thread every clock cycle to avoid data depen-
dencies. In its simplest form, the scheduler simply provides
round-robin execution of each of the threads in the thread
pool.

Synchronization is also very fine grain, light weight, and
provided by hardware via the use of a Full/Empty bit (simi-
lar to that employed by the Cray MTA[1]). When using syn-
chronizing loads and stores, a LOAD instruction will check
to see if the full/empty bit for a given wide word is set to
FULL, and, if so, will atomicly load the data into a register
and set the bit to EMPTY. If the bit is already EMPTY, the
thread can either block or spin until the bit becomes FULL.
STORE instructions return the data to memory and set the
full/empty bit to FULL.

2.5. PIM System Architecture

Figure 2 shows the three possible PIM system architec-
tures. In the first configuration, and throughout this work,
PIMs can construct homogeneous arrays in which the PIM
itself constitutes the only processing element in the system.
PIMs may also be used as the memory for conventional ma-
chines, providing acceleration for local computations (as in
the DIVA[18] architecture), or as part of a very large mem-
ory hierarchy (as in the HTMT architecture[20]). In any
case, the homogeneous array model allows for fast PIM-
to-PIM communication using MPI.

3. MPI Implementation using Parcels

The goal of MPI for PIM is to provide a viable “proof
of concept” and a testbed for exploring the issues of imple-
menting MPI on a PIM system. Specifically, it explores the
effects of a highly multithreaded programming model on
MPI’s complexity and performance. As a limited testbed,
and due to the constraints of the Architectural Simula-
tor, MPI for PIM implements only a subset of the MPI-
1.2 standard[25]. With the exception of MPI Barrier(),

PIM PIM PIM PIM

PIM PIM PIM PIM

PIM PIM PIM PIM

PIM PIM PIM PIM

PIM PIM PIM PIM

PIM PIM PIM PIM

PIM PIM PIM PIM

PIM PIM PIM PIM

MEMORY

HIERARCHY OTHER PROCESSORS

PIM

PIM

PIM

CONVENTIONAL
CPU

A HOMOGENEOUS PIM ARRAY PIM AS THE MEMORY FOR A CONVENTIONAL SYSTEM

PIM AS PART OF A LARGE MEMORY HIERARCHY

Figure 2: PIM System Architecture

MPI Comm rank()
MPI Comm size()
MPI Finalize()
MPI Init() %
MPI Irecv()
MPI Probe()

MPI Barrier() %

MPI Isend()
MPI Recv() %
MPI Send() %
MPI Test()
MPI Wait() %

MPI WaitAll() %

Figure 3: Subset of MPI implemented by MPI for PIM.
% indicates functions which are built from other MPI func-
tions.

only basic point-to-point communication and basic support
functions were implemented (Figure 3). Only support for
basic MPI Datatypes is included and MPI COMM WORLD,
is the only group. Also, each MPI process runs in the same
address space. Due to the highly multithreaded implementa-
tion of MPI for PIM, many of the blocking communication
functions are built from their equivalent nonblocking func-
tions and an MPI Wait().

3.1. Effects of threading

MPI for PIM uses pervasive multithreading to achieve
concurrency, reduce the complexity of the implementa-
tion, and hide latency. To avoid the traditionally high

costs of thread synchronization and programming, MPI
for PIM leverages two features of the PIM programming
model: fine-grain locking and thread migration.

Conventional single thread implementations of MPI of-
ten have difficulty achieving true concurrency with non-
blocking communication. After requests are enqueued, the
status of the request can only be advanced when a call is
made to MPI. Thus, whenever any MPI call is made, a sin-
gle thread MPI must iterate through its list of outstand-
ing requests and attempt to update their status. This results
in many MPI calls experiencing significant overhead when
there are outstanding requests as the MPI implementation
must “juggle” all outstanding requests whenever an MPI
call is made [38]. By using threads, MPI for PIM avoids
juggling requests. Requests are assigned a thread which can
advance the request as needed without having to wait for an-
other call to MPI.

Because PIMs utilize fine-grain interwoven threads, it is
possible to use threads to reduce or hide latency. For exam-
ple, a call to memcpy() in a single threaded MPI imple-
mentation would cause all other processing to stop for the
duration of the call. In contrast, MPI for PIM can divide a
memcpy() amongst several threads allowing the copy to
proceed in parallel with other processing. By using multi-
ple threads for each memcpy(), it is possible to fully uti-
lize the processor pipeline by avoiding stalls.

Traditionally, synchronization between threads has car-
ried a high cost. Conventional mutexes and semaphores
require expensive context switches between user and OS
space and incur significant overhead. MPI for PIM avoids
much of this cost by using hardware supported fine-grain
locking through full-empty bits (FEBs). FEBs associate an
extra bit with each wide word (256 bits) of memory. This
bit can be used to provide mutual exclusion of accesses to
that wide word. For example, if a thread accesses a word
with a full-empty bit set to empty (0) that thread will block.
A unique identifier for the blocking thread is stored so that
when another thread ’fills’ that FEB (setting it to 1), the
blocking thread can be quickly woken. Because of this hard-
ware support, FEBs can be utilized without a context switch
to the OS, and with very little performance overhead. This
low overhead also allows use of locking at a lower level of
granularity, limiting serialization and again improving per-
formance.

Another key aspect of the PIM programming model is
support for traveling threads. Traveling threads allow the
communication of not just “dumb” data, but also a thread of
execution. In MPI for PIM, this means that a receiving pro-
cess does not have to dedicate resources to monitoring in-
coming messages and responding to them. Instead a mes-
sage send causes a thread migration to the destination pro-
cess. Once there, the sending thread continues execution,
performing any required resource management or copying

as needed. Because each incoming message is a thread, it
can “look after itself.” This again avoids having to juggle
multiple MPI requests.

3.2. Key Data Structures

Each MPI process has three main queues which coordi-
nate communication between the threads on that node:

& Posted Queue: contains MPI requests for receive
operations which have posted a buffer to be re-
ceived into, but which are not yet completed. Calls to
MPI Irecv() add to this list.

& Unexpected Queue: contains requests from mes-
sages which arrived at an MPI process, but could not
find a posted buffer to be copied into. These messages
will allocate a buffer and copy their data to it.

& Loitering Queue: used for the rendezvous send
protocol. Large messages which arrive unexpectedly
may not be able to allocate sufficient resources to cre-
ate an unexpected buffer. These messages can chose
to ’loiter,” periodically checking the posted queue
for a suitable buffer. Loitering messages will post an
MPI envelope to the loitering queue so that
calls to MPI Probe() will be able to match their en-
velope.

Each of these queues is implemented as a collection of
pointers, with each of these pointers protected by a full
empty bit. This allows multiple threads to traverse the queue
at the same time, though only one thread can modify a par-
ticular queue element at any one time.

3.3. Implementation of MPI Isend()

All calls to MPI Isend() cause a new thread to be
spawned. This thread will take one of two different paths
of execution, depending on the message size. Figure 4 il-
lustrates the implementation of MPI Isend() in MPI for
PIM. Dashed lines are used to show the flow of the call-
ing thread with solid lines illustrating the flow of the Isend
thread.

Data buffers for “Eager” messages (below 64K) are im-
mediately assembled into a parcel for transfer across the
network. Once assembled, the MPI Isend() request can
be marked as “done” and the thread will migrate to the des-
tination process. Upon arriving, the Isend thread checks the
posted queue to see if a buffer has already been posted
for it. If it finds a match it will deliver the message data
to that buffer. If no match is found, the thread will allocate
a suitable buffer and place a request on the unexpected
queue.

Messages larger than 64K utilize a rendezvous protocol
to avoid resource exhaustion on the destination node. The

main()

MPI_ISend()

Test

checkSize

Copy Data &
Migrate to
Destination

Expected?

Check
Posted

Deliver to
Unexpected

Deliver to
Posted Buffer

Migrate To
Destination

Check
Posted

Expected?

Migrate to
Source & Copy
Data

Migrate to
Destination &
Deliver Data

Wait for
Buffer

End ISend
Thread

Post to
Loiter

Eager

Rendezvous

YesNo

Yes

No

Figure 4: Implementation of MPI Isend() in MPI for
PIM

Isend thread migrates to the destination node and checks for
a posted buffer. If it finds such a buffer the thread will claim
the buffer and prevent other threads copying data into it by
removing it from the posted queue. The Isend thread
will then return to its source node and assemble the message
buffer for transfer across the network, marking the send re-
quest as done before migrating to back to the destination
node. Here the thread will deliver the message data to the
waiting buffer.

If a rendezvous ISend cannot find a posted buffer it
can instead post its message envelope to the loiter
queue and then wait for a buffer to become available.
By posting its envelope to the loiter queue, calls to
MPI Probe() can be aware of loitering rendezvous mes-
sages. To preserve ordering semantics, a “dummy” request
is placed in the unexpected queue.

3.4. Implementation of MPI Irecv() and
MPI Probe()

MPI Irecv() and MPI Probe() both follow some-
what similar paths (Figure 5). Because MPI Irecv() is
nonblocking, it begins with a thread spawn. MPI Probe()
is blocking, so it is does not execute in another thread.
MPI Irecv() first checks the status of its request, as

it may already have been completed by a send. If it is not

main()

MPI_IRecv()

Test

Done? Check
Unexpected

Found?

PostCopy Data

End IRecv()
Thread

Yes

No

Yes No

main()

MPI_Probe()

Check
Unexpected
Queue

Check
Loiter ListFound?

Found?

Return
Probe()

Yes

No

Yes

No

Figure 5: Implementation of MPI Irecv() and
MPI Probe() in MPI for PIM

complete, the Irecv thread will check the unexpected
queue for a match. If no match is found, it will post its
request to the posted queue before exiting. It is possi-
ble for a matching send to arrive after the unexpected
queue has been checked, but before the receive has been
posted. This could violate the MPI ordering semantics,
so the unexpected queue is locked while it is being
checked and the receive is posted.

Similarly, MPI Probe() also checks the
unexpected queue for a match. If no unexpected mes-
sage is found, it will then check the loiter queue
to see if there are any matching rendezvous sends.
MPI Probe() will continue checking these queues un-
til a match is found.

4. Evaluation Methods

The initial comparison of MPI for PIMs and commod-
ity processors is focused on measurements of the complex-
ity of the code paths for some core MPI routines. Thus, it
is based on a simplistic microbenchmark. Traces of this mi-
crobenchmark under a variety of possible usage scenarios
were taken and compared for MPICH 1.2.5 and LAM-MPI
6.5.9 on a PowerPC and for MPI for PIM on a simulated
PIM architecture. This section describes the benchmark and
the methodology that was used for tracing and simulation.

4.1. Benchmark

The microbenchmark used for this evaluation was writ-
ten at Sandia National Labs to consider the impact of posted
versus unexpected receives. The code uses a combination
of MPI Irecv, MPI Send, MPI Recv, MPI Barrier,
MPI Probe, and MPI Waitall to control the percentage
of messages that are unexpected. The test sends 10 mes-
sages of parameterizable size in each direction (for a to-
tal of 20 sequential sends). This benchmark was used for
this analysis because it effectively exercised a small set of
the most commonly used MPI routines under varying usage
scenarios. This allowed us to vary the code paths taken and
study the impact of those code paths on instruction count,
memory references, and instructions per cycle (IPC).

4.2. Trace Based Analysis

Traces for the baseline conventional implementations
LAM and MPICH were gathered on an Apple Macintosh
Power Mac with a PowerPC MPC7450 (G4 �) processor
running at 1Ghz. This platform was running Darwin ker-
nel version 6.6 (Mac OS X 10.2.6). The amber utility [2]
was used to gather instruction traces of the microbenchmark
described in Section 4.1 using both LAM and MPICH im-
plementations of MPI. These instruction traces were then

converted to an architecture independent format called TT7
[35] for further analysis.

The traces gathered from LAM and MPICH were sim-
ulated on a PowerPC MPC7400 (G4) processor running at
400Mhz to perform more detailed analysis. The MPC7400
can fetch up to four instructions per cycle and can have up to
eight instructions executing at a time. Microarchitecturally,
it has two integer units, one combined address generation
and memory unit, a floating point unit, and branch resolu-
tion unit, and two vector units. The PowerPC has a 32K
8-way associative iL1 and dL1 and a 1024K 2-way com-
bined L2 cache [26]. For these simulations the caches and
TLBs were warmed. Though the platform used for tracing
and the platform used for simulation differ, they both uti-
lize the same PowerPC ISA, so the instruction traces are
portable.

Execution of MPI for PIM was performed on a PIM Ar-
chitectural simulator which can also generate traces. The
MPI for PIM source code was instrumented with special
tracing functions so instructions in the trace could be cat-
egorized into broad categories (see Section 5.2). To gen-
erate execution times for MPI for PIM, the traces from
the architectural simulator were simulated on a PIM Trace-
based simulator, built to mesh with the architectural simu-
lator. This simulator models several key components of a
PIM system and uses a discrete event simulator to repre-
sent interactions between these components. The simulator
uses the instruction trace of the execution of a program to
model the behavior and execution of that program on a hy-
pothetical PIM system. A number of architectural param-
eters for this hypothetical system can be specified for the
execution of the trace. These parameters include: the man-
ner in which data is distributed amongst the PIMs, memory
latencies, communication latencies, PIM memory sizes, in-
struction cache parameters, and pipeline depth.

To provide a fair comparison between MPI for PIM and
other implementations, sections of the LAM and MPICH
traces which concerned functionality not implemented in
MPI for PIM were discounted. These include functions
which dealt with specifics of the network interface, book-
keeping, debugging, datatype or communicator lookup,
byte ordering, and parameter checking. Such functions were
identified and any instructions in the trace which executed
in these functions were removed. To accomplish this, the
otool disassembler was used to find mappings between
instructions in the TT7 Trace and functions in LAM or
MPICH.

4.3. Simulation Based Analysis

Cycle counts for execution on the PowerPC were ob-
tained using the simg4 cycle accurate simulator from Mo-
torola [27]. This simulator produced accurate cycle counts,

instruction mixes, pipeline stall counts, and cache perfor-
mance data. Cycle count estimates for the instruction cat-
egories for each function shown in Section 5.2 were esti-
mated using output from simg4. Pipeline stall counts for
memory instructions were used to calculate a rough IPC
for memory instructions. Given this number, the number of
memory instructions, and the overall number of cycles to
execute the function trace, it was possible to estimate the
average IPC of non-memory instructions for that function.
The relative number of memory to non-memory instructions
belonging to each instruction category were combined with
the IPC estimates to produce a cycle estimate for each cate-
gory.

The PIM Architectural simulator is a component-based
discrete event simulator. It is based off of the SimpleScalar
tool set [9] and uses the PISA ISA with special extensions
to access extra PIM functionality such as thread migration,
thread creation, and the manipulation of Full/Empty Bits.
These extensions are consistent with the PIM Lite ISA. It
can simulate the functioning of multiple PIMs and includes
support for adjusting some architectural features, such as
the distribution of the address space across multiple PIMs
and network latency. Variables for memory access, pipeline
delays, and instruction fetching can all be adjusted (table 1).

5. MPI Performance Impact

This section presents results comparing various aspects
of the performance of the MPI for PIM prototype and MPI
implementations on commodity platforms. As described in
Section 4, only the aspects of MPI that were implemented
in MPI for PIM were analyzed. Comparisons are presented
for both eagerly sent messages (256 bytes) and messages
transferred with a rendezvous protocol (80 KB). The com-
parisons include the number of instructions executed, the
number of memory accesses performed, the instructions per
cycle (IPC) achieved and the total number of CPU cycles.
These numbers are presented on an overall (Section 5.1) and
a per MPI call basis (Section 5.2). Some discussion of other
performance issues is also presented in Section 5.3.

5.1. Overhead Reduction

An important aspect of MPI for PIM is the potential re-
duction in the overhead of MPI calls. MPI overhead in-
cludes time spent performing tasks other than the actual
network communication or required buffer copies. Because
of a pervasively multithreaded implementation, MPI for
PIM can avoid much of the MPI state swapping, or “jug-
gling”, which must occur in a single thread MPI.

MPI for PIM executes fewer overhead instructions than
LAM, and usually fewer instructions than MPICH, depend-
ing on message size and the number of posted receives

Variable simg4 PIM
Main memory latency, open page 20 cycles 4 cycles
Main memory latency, closed page 44 cycles 11 cycles
L2 latency 6 cycles NA
Pipelines 7 (2 int., mem, FP, BR, 1 Vec.) 1
Pipeline Depth 4 (integer) 4 (interwoven)

Table 1: Latencies and processor configurations used for simulation

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 20 40 60 80 100

To
ta

l I
ns

tru
ct

io
ns

Percentage of Posted Receives

LAM MPI
MPICH

PIM MPI

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 20 40 60 80 100

To
ta

l I
ns

tru
ct

io
ns

Percentage of Posted Receives

LAM MPI
MPICH

PIM MPI

(a) (b)

0

5000

10000

15000

20000

25000

30000

35000

40000

0 20 40 60 80 100

M
em

or
y

C
yc

le
s

Percentage of Posted Receives

LAM MPI
MPICH

PIM MPI

0

5000

10000

15000

20000

25000

30000

35000

40000

0 20 40 60 80 100

M
em

or
y

C
yc

le
s

Percentage of Posted Receives

LAM MPI
MPICH

PIM MPI

(c) (d)

Figure 6: Total instructions executed in MPI routines for benchmark application (a) eager sends and (b) rendezvous sends,
excluding network instructions; Number of memory accesses in MPI routines for benchmark application for (c)eager sends;
(d) rendezvous sends, excluding network instructions.

(figure 6(a-b)). The PIM implementation also makes fewer
memory references (figure 6(c-d)). The reduction in mem-
ory references is compounded because the PIM processor is
“closer” to the memory. As such, these memory references
tend to be less costly (lower latency, higher bandwidth) than
memory references in a conventional architecture. Combin-
ing the reduction in memory references with the improve-
ment in memory access time yields a significant reduction
in the time spent accessing memory.

Because MPI for PIM’s memory references are fewer

and faster, its overall IPC tends to be high (figure 7(c-d)).
MPICH suffers from a high branch misprediction rate (up to
20%), which usually limits its IPC to less than 0.6. LAM’s
IPC for eager messages is high, often outperforming PIM.
However, for longer messages it suffers from more data
cache misses which limit its performance.

These differences in IPC result in an overall cycle count
which is lower than the conventional MPIs. For eager sends,
MPI for PIM averages 45% less overhead than MPICH
and 26% less than LAM. For rendezvous sends, MPI for

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 20 40 60 80 100

C
P

U
 C

yc
le

s

Percentage of Posted Receives

LAM MPI
MPICH

PIM MPI

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 20 40 60 80 100

C
P

U
 C

yc
le

s

Percentage of Posted Receives

LAM MPI
MPICH

PIM MPI

(a) (b)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

IP
C

Percentage of Posted Receives

LAM MPI
MPICH

PIM MPI

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

IP
C

Percentage of Posted Receives

LAM MPI
MPICH

PIM MPI

(c) (d)

Figure 7: Total CPU cycles spent in MPI routines for benchmark application for (a) eager sends and (b) rendezvous sends,
excluding network instructions; Instructions per cycles (IPC) for instructions in MPI routines for benchmark application for
(e)eager sends and (f) rendezvous sends;

PIM averages 42% less overhead than MPICH and 70%
less than LAM.

The actual time spent in MPI would depend on the fab-
rication process used in a PIM processor. However, a PIM
pipeline would generally be much simpler than a conven-
tional processor and would probably be able to run at least
a similar clock rate. Additionally, as conventional proces-
sor speeds grow, the latency between memory and proces-
sor would also increase further limiting conventional per-
formance.

5.2. MPI Function Analysis

To explain the performance differences between MPI for
PIM and conventional single threaded MPIs, it is useful to
examine several of the major MPI calls. The overhead in
these calls can be classified into one of four behaviors:

& State Setup/Update: Initialization and updating of
MPI Requests and internal state dealing with the
progress of a function.

& Cleanup: Deallocation of data structures, unlocking
of synchronization controls, removal of requests from
lists or queues.

& Queue Handling: Iterating through lists or queues to
advance requests or match envelopes. May also in-
clude searching hash tables for matches (LAM) and
acquiring synchronization locks (MPI for PIM).

& Juggling: Time spent switching from the MPI con-
text of one request to another in single threaded MPIs.
This generally occurs when there are multiple out-
standing non-blocking requests and the MPI must
check each to see if progress can be made on them,
such as LAM’s rpi c2c advance() or MPICH’s
MPID DeviceCheck().

MPI for PIM generally executes MPI functions with
less overhead than single threaded MPIs. This difference
in performance comes from several factors. In addition to
the overall performance improvement of faster memory ac-
cesses, MPI for PIM functions require less state setup for

LAM MPICH PIM LAM MPICH PIM LAM MPICH PIM
0

500

1000

1500

2000

2500

3000

3500

Probe Send Recv

Eager Protocol Estimated Cycles

E
st

im
at

ed
 C

yc
le

s
State Setup/Update
Cleanup
Queue
Juggling

LAM MPICH PIM LAM MPICH PIM LAM MPICH PIM
0

500

1000

1500

2000

2500

3000

3500

4000

Probe Send Recv

Rendezvous Protocol Estimated Cycles

E
st

im
at

ed
 C

yc
le

s

State Setup/Update
Cleanup
Queue
Juggling

(a) (b)

LAM MPICH PIM LAM MPICH PIM LAM MPICH PIM
0

500

1000

1500

2000

2500

Probe Send Recv

Eager Protocol Instructions

In
st

ru
ct

io
ns

State Setup/Update
Cleanup
Queue
Juggling

LAM MPICH PIM LAM MPICH PIM LAM MPICH PIM
0

500

1000

1500

2000

2500

3000

3500

Probe Send Recv

Rendezvous Protocol Instructions

In
st

ru
ct

io
ns

State Setup/Update
Cleanup
Queue
Juggling

(c) (d)

LAM MPICH PIM LAM MPICH PIM LAM MPICH PIM
0

100

200

300

400

500

600

700

800

900

Probe Send Recv

Eager Protocol Memory Instructions

M
em

or
y

In
st

ru
ct

io
ns

State Setup/Update
Cleanup
Queue
Juggling

LAM MPICH PIM LAM MPICH PIM LAM MPICH PIM
0

100

200

300

400

500

600

700

800

900

1000

Probe Send Recv

Rendezvous Protocol Memory Instructions

M
em

or
y

In
st

ru
ct

io
ns

State Setup/Update
Cleanup
Queue
Juggling

(e) (f)

Figure 8: A breakdown of the CPU cycles spent in each of three routines for (a)eager sends and (b) rendezvous sends; A
breakdown of the instructions executed in each of three routines for (c)eager sends and (d) rendezvous sends; A breakdown
of the memory access instructions executed in each of three routines for (e)eager sends and (f) rendezvous sends. All break-
downs exclude network and memory copy instructions.

the rendezvous protocol, and does not have to “juggle” mul-
tiple requests.

MPI for PIM requires fewer cycles to setup and main-
tain state in several key MPI functions, but especially when
comparing the rendezvous protocol (figure 8(a-b)). This is
due to the use of “intelligent” traveling threads to perform
sends. A conventional MPI must expend cycles initializing
a send request, update this request as it is sent, and then in-
terpret the incoming data, dispatch it based upon protocol,
and setup state on the receiving side to track the incoming
data. In effect, a conventional MPI must setup the state in-
formation for send twice. In contrast, an MPI based upon
traveling threads does not have to interpret and dispatch in-
coming data. Instead, the incoming thread contains state de-
scribing the send which is already initialized. The traveling
thread can “dispatch itself”, performing whatever actions
are required by its protocol.

Another advantage of MPI for PIM is that MPI func-
tions do not have to switch contexts from one MPI request
to another to advance pending requests. The overhead of
this “juggling” of requests can be quite significant (figure
8(c-d)), especially since this class of behavior tends to re-
quire a large number of memory accesses (figure 8(e-f)). In
LAM it accounted for 14% to 60% of MPI overhead instruc-
tions, depending on the number of outstanding requests. In
MPICH, it accounted for between 18% and 23%.

There are some cases where MPI for PIM performs
poorly compared to LAM or MPICH. LAM’s implementa-
tion of MPI Probe() outperforms MPI for PIM, mainly
due to inefficient queue traversal in MPI for PIM. This
is most likely because MPI for PIM’s MPI Probe()
must cycle between two queues. Additionally, MPICH’s
MPI Send() outperforms MPI for PIM with rendezvous
sized messages. It appears that MPICH’s send performs a
“short-circuit” type optimization and bypasses the normal
queuing and device checking procedures. Lastly, MPI for
PIM often requires more instructions in cleanup activities.
This is mainly due to the extra queue unlocking which is re-
quired for synchronization.

5.3. Other Performance Impacts

Another architectural advantage of PIMs is extremely
high memory bandwidth, which could be exploited for per-
forming very fast memory copies. Conventional processors
suffer significant performance degradation when perform-
ing memory copies which exhaust their cache. This effect
is shown in figure 9(d). A PowerPC G4 with a 32K L1 data
cache is capable of performing a memcpy() of less than
32K at an IPC close to 1.0. However, memory copies greater
than 32K show a serious drop in performance, with IPC
falling to under 0.4. This drop in performance is a graphic
depiction of hitting the “memory wall” and will only be-

come more pronounced as the gap between memory and
processor speeds grows.

PIM processors have several advantages when perform-
ing memory copies. The first is that a PIM processor is
“closer” to memory. It does not have to go through sev-
eral layers of cache, but is connected directly to the mem-
ory macro. Additionally, it is possible to copy a full DRAM
row at a time.

MPI frequently requires memory copies to handle un-
expected messages, pack data, assemble messages, and
perform shared memory communication. These memory
copies can account for a significant percentage of the total
time spent in MPI, especially for large message sends. By
utilizing the architectural features of PIM to reduce mem-
ory copy times, MPI time could be considerably reduced
(figure 9(b) and (c)).

6. Related Work

The prototype MPI implementation that we have de-
scribed in this paper is very similar to other MPI implemen-
tations on top of active message layers, such as those de-
scribed in [12, 22, 3]. It is also similar to implementations
that have been built on networks that have remote DMA
(RDMA) capability, such as those described in [5, 16, 23].
However, the traveling thread model is able to support some
features of MPI much more efficiently.

For example, most of the implementations of MPI on
top of active messages require the process to poll the net-
work in order to process messages and activate message
handlers. This can lead to inefficiencies when the receiv-
ing process is not running, and, in some cases, may vio-
late the progress rule of MPI. Hardware support for travel-
ing threads increases the ability of remote processing to oc-
cur on the arrival of messages without interference from the
operating system and without requiring the receiving pro-
cess to waste processor cycles polling the network.

Existing RDMA-based implementations of MPI also
suffer from similar issues. Messages can arrive without ex-
plicitly polling by the receiver, but the MPI library must ac-
tively notice incoming messages and process them. For ex-
ample, a short message is typically written into a buffer that
is managed by the MPI library, and is later copied into a re-
ceive buffer. This can only occur after the MPI library no-
tices that it has arrived. Traveling threads allow for this pro-
cessing to happen immediately upon thread arrival.

7. Conclusions

This work is based on a PIM architecture that could read-
ily form the basis for commodity cluster computing in the
future. As such, it is important to consider the implications
of this technology for current computing paradigms. Thus,

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

0 20 40 60 80 100 120

C
P

U
 C

yc
le

s

Percentage of Posted Receives

LAM MPI (total)
LAM MPI (memcpy)

MPICH (total)
MPICH (memcpy)

PIM (total)
PIM (memcpy)

PIM (improved memcpy)

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

0 20 40 60 80 100

C
P

U
 C

yc
le

s

Percentage of Posted Receives

LAM MPI (total)
LAM MPI (memcpy)

MPICH (total)
MPICH (memcpy)

PIM (total)
PIM (memcpy)

PIM (improved memcpy)

(a) (b)

0

10000

20000

30000

40000

50000

60000

70000

80000

0 20 40 60 80 100 120

C
P

U
 C

yc
le

s

Percentage of Posted Receives

LAM MPI (total)
LAM MPI (memcpy)

MPICH (total)
MPICH (memcpy)

PIM (total)
PIM (memcpy)

PIM (improved memcpy)

0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000 120000 140000

IP
C

Copy Size

IPC

(c) (d)

Figure 9: Total MPI cycles, including memcpys for (a) eager sends and (b) rendezvous sends;(c) eager sends at a more de-
tailed scale; (d) Conventional memcpy IPC for varying copy sizes.

this work presents an analysis of an initial implementation
of MPI on PIM architectures. Although the PIM architec-
ture is explicitly designed for parallelism, it is not explicitly
designed to support MPI. Despite this, the preliminary anal-
ysis indicates that a PIM architecture will support MPI very
well, and may reduce the complexity of the MPI implemen-
tation via inherent multithreading. In terms of performance,
for many of the operations implemented, MPI for PIM re-
quires fewer CPU cycles than the equivalent implementa-
tions on a commodity processor. This is attributable to a
significant reduction in total instructions through the use of
special features in the PIM. In other cases, this comes from
an increase in instructions per cycle (IPC). Overall, this
work demonstrates that an MPI implementation for PIM is
not only possible, but is likely to perform at least as well as
what is found on commodity systems.

8. Future Work

Only a preliminary analysis is presented here. Future
work will focus on implementing more of the MPI standard
to permit application simulation on the architectural sim-

ulator. Simulation of real applications will allow us to ex-
plore PIM usage models ranging from one PIM “node” per
MPI rank to several PIM “nodes” per MPI rank. This will
offer insight into the balance between fine-grained paral-
lelism extracted by a compiler (or represented in OpenMP)
and coarse grained explicit message passing implemented
by the user. Balance factor issues such as “surface to vol-
ume” ratios will come into play in these studies.

A second aspect of future work will be determining the
impacts of other unique features of the PIM on MPI perfor-
mance. For example, PIM instruction sets will likely pro-
vide vector types of operations on extremely wide words.
Additionally, the extremely high memory bandwidth pro-
vided by PIMs may offer a significant win for applica-
tions using MPI derived datatypes. Also, PIMs can offer
extremely fine grained synchronization methods that will
allow automated exploitation of opportunities for commu-
nication and computation overlap. For example, it may be
possible to allow an MPI Recv to return before all of the
data has arrived. Fine grained synchronization could then
block the application if it attempted to access a portion of
the data that has not arrived. Finally, PIMs may also sup-

port the MPI-2 one-sided communication functions very
efficiently, especially the accumulate operation, which al-
lows for operations to be performed on remote data. Fi-
nally, given the close ties between the PIMs simulated in
this work and PIM Lite, experimentation with the MPI li-
brary in the PIM Lite architecture and simulations using
larger MPI-based applications will be performed.

References

[1] R. Alverson, D. Callahan, D. Cummings, B. Koblenz,
A. Porterfield, and B. Smith. The Tera System. Tera Com-
puter Company.

[2] Apple Architecture Performance Groups. Computer Hard-
ware Understanding Development Tools 2.0 Reference
Guide for MacOS X. Apple Computer Inc, July 2002.

[3] M. Banikazemi, R. K. Govindaraju, R. Blackmore, and D. K.
Panda. MPI-LAPI: An efficient implementation of MPI for
IBM RS/6000 SP systems. IEEE Transactions on Parallel
and Distributed Systems, 12(10):1081–1093, Oct. 2001.

[4] J. Borkenhagen, R. Eickemeyer, R. Kalla, and S. Kunkel. A
Multithreaded PowerPC Processor for Commercial Servers.
IBM Journal of Research and Development, 44(6), Novem-
ber 2000.

[5] R. Brightwell and A. Skjellum. MPICH on the T3D: A
case study of high performance message passing. In IEEE,
editor, Proceedings. Second MPI Developer’s Conference:
Notre Dame, IN, USA, 1–2 July 1996, 1109 Spring Street,
Suite 300, Silver Spring, MD 20910, USA, 1996. IEEE Com-
puter Society Press.

[6] J. Brockman, P. Kogge, S. Thoziyoor, and E. Kang. Pim
lite: On the road towards relentless multi-threading in mas-
sively parallel systems. Technical Report TR-03-01, Com-
puter Science and Engineering Department, University of
Notre Dame, 384 Fitzpatrick Hall, Notre Dame IN 46545,
February 2003.

[7] J. B. Brockman, P. M. Kogge, V. Freeh, S. K. Kuntz, and
T. Sterling. Microservers: A new memory semantics for mas-
sively parallel computing. In ICS, 1999.

[8] D. Burger. System-Level Implications of Processor-Memory
Integration. Proceedings of the 24th International Sympo-
sium on Computer Architecture, June, 1997.

[9] D. Burger and T. Austin. The SimpleScalar Tool Set, Version
2.0. SimpleScalar LLC.

[10] D. Burger, J. R. Goodman, and A. Kagi. Limited Band-
width to Affect Processor Design. IEEE Micro, Novem-
ber/December 1997.

[11] D. Burger and A. Kagi. Memory bandwidth Limitations of
Future Microprocessors. Proceedings of the 23th Interna-
tional Symposium on Computer Architecture, May, 1996.

[12] C.-C. Chang, G. Czajkowski, C. Hawblitzel, and T. von
Eicken. Low-latency communication on the IBM RISC Sys-
tem/6000 SP. In ACM, editor, Supercomputing ’96 Confer-
ence Proceedings: November 17–22, Pittsburgh, PA, New
York, NY 10036, USA and 1109 Spring Street, Suite 300,
Silver Spring, MD 20910, USA, 1996. ACM Press and IEEE
Computer Society Press.

[13] D. E. Culler, S. C. Goldstein, K. E. Schauser, and T. Von
Eicken. TAM – A compiler controlled Threaded Abstract
Machine. Journal of Parallel and Distributed Computing,
18(3):347–370, July 1993.

[14] D. E. Culler, A. Sah, K. E. Schauser, T. von Eicken, and
J. Wawrzynek. Fine-grain parallelism with minimal hard-
ware support: A compiler-controlled threaded abstract ma-
chine. In Proceedings of the 4th International Conference
on Architectural Support for Programming Languages and
Operating Systems, pages 164–175, Apr. 1991. Published in
Vol.26, No.4. Apr.1991. Also as Tech report UCB-CSD-90-
594, University of California Berkeley, Department of Com-
puter Science.

[15] W. J. Dally, J. A. S. Fiske, J. S. Keen, R. A. Lethin, M. D.
Noakes, P. R. Nuth, R. E. Davison, and G. A. Fyler. The
message-driven processor. IEEE Micro, pages 23–39, Apr.
1992.

[16] R. Dimitrov and A. Skjellum. An Efficient MPI Implemen-
tation for Virtual Interface (VI) Architecture-Enabled Clus-
ter Computing. In Proceedings of the Third MPI Develop-
ers’ and Users’ Conference, pages 15–24, March 1999.

[17] R. Draves, B. Bershad, R. Rashid, and R. Dean. Using Con-
tinuations to Implement Thread Management and Communi-
cation in Operating Systems. Proceedings of the 13th Sym-
posium on Operating Systems Principles.

[18] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper,
J. LaCoss, J. Granacki, A. Srivastava, W. Athas, J. Brock-
man, V. Freeh, J. Park, and J. Shin. Mapping Irregular Ap-
plications to DIVA, A PIM-based Data-Intensive Architec-
ture. In Supercomputing, Portland, OR, November 1999.

[19] P. M. Kogge, J. B. Brockman, and V. Freeh. Processing-In-
Memory Based Systems: Performance Evaluation Consider-
ations. In Workshop on Performance Analysis and its Impact
on Design held in conjunction with ISCA, Barcelona, Spain,
June 27-28, 1998.

[20] P. M. Kogge, J. B. Brockman, and V. W. Freeh. PIM Ar-
chitectures to Support Petaflops Level Computation in the
HTMT Machine. In 3rd International Workshop on Innova-
tive Architectures, Maui High Performance Computer Cen-
ter, Maui, HI, November 1-3, 1999.

[21] S. K. Kuntz, R. C. Murphy, M. T. Niemier, J. Izaguirre, and
P. M. Kogge. Petaflop Computing for Protein Folding. In
Proceedings of the Tenth SIAM Conference on Parallel Pro-
cessing for Scientific Computing, Portsmouth, VA, March 12-
14, 2001.

[22] M. Lauria and A. A. Chien. MPI-FM: High Performance
MPI on Workstation Clusters. Journal of Parallel and Dis-
tributed Computing, 40(1):4–18, January 1997.

[23] J. Liu, J. Wu, S. P. Kinis, P. Wyckoff, and D. Panda. High
performance RDMA-based MPI implementation over Infini-
Band. In Proceedings of 17th Annual ACM International
Conference on Supercomputing, June 2003.

[24] D. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, J. Miller,
and M. Upton. Hyper-threading technology architecture and
microarchitecture: A hypertext history. Intel Technology
Journal, February 2002.

[25] Message Passing Interface Forum. MPI: A message-passing
interface standard. Technical Report UT-CS-94-230, 1994.

[26] Motorola Inc. MPC7400 RISC Microprocessor User’s Man-
ual, March.

[27] Motorola System Performance Modeling and Simulation
Group. Sim G4 v1.4.1 User’s Guide, 1998. Available as
part of Apple Computer’s CHUD tool suite.

[28] R. C. Murphy. Design Parameters for Distributed PIM Mem-
ory Thesis. MS CSE Thesis, University of Notre Dame, April
2000.

[29] R. C. Murphy and P. M. Kogge. Trading Bandwidth for
Latency: Managing Continuations Through a Carpet Bag
Cache. In Proceedings of the International Workshop on In-
novative Architecture 2002 (IWIA02). IEEE Computer Soci-
ety, January 10-11, 2002.

[30] R. C. Murphy, P. M. Kogge, and A. A. Rodrigues. The Char-
acterization of Data Intensive Memory Workloads on Dis-
tributed PIM Systems. In Proceedings of the Second Work-
shop on Intelligent Memory Systems, held in conjunction
with ASPLOS-IX, Cambridge, MA. ACM Press, November
12-15, 2000.

[31] R. S. Nikhil and Arvind. Can dataflow subsume von Neu-
mann computing? In Proceedings of the 16th Annual Inter-
national Symposium on Computer Architecture, pages 262–
272, June 1989.

[32] M. D. Noakes, D. A. Wallach, and W. J. Dally. The J-
machine multicomputer: An architectural evaluation. In
L. Bic, editor, Proceedings of the 20th Annual International
Symposium on Computer Architecture, pages 224–236, San
Diego, CA, May 1993. IEEE Computer Society Press.

[33] G. M. Papadopoulos and D. E. Culler. Monsoon: An explicit
token-store architecture. In 17th International Symposium on
Computer Architecture, number 18(2) in ACM SIGARCH
Computer Architecture News, pages 82–91, Seattle, Wash-
ington, May 28–31, June 1990.

[34] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Kee-
ton, C. Kozyrakis, R. Thomas, and K. Yelick. A Case for In-
telligent DRAM: IRAM. IEEE Micro, April, 1997.

[35] A. Rodrigues. Rudra: A Reactive Dissipation Reducing Ar-
chitecture. Master’s thesis, University of Notre Dame, 2003.

[36] T. Sterling and L. Bergman. A design analysis of a hybrid
technology multithreaded architecture for petaflops scale
computation. In International Conference on Supercomput-
ing, Rhodes, Greece, June 20-25, 1999.

[37] T. Sterling and H. Zima. Gilgamesh: A Multithreaded
Processor-In-Memory Architecture for Petaflops Comput-
ing. In SC2002, Baltimore, MD.

[38] T. L. Team. Porting the lam-mpi 6.3 communication layer.
Technical Report TR00-01, Univesity of Notre Dame, 2000.

[39] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser. Active messages: A mechanism for integrated
communication and computation. In Proceedings of the 19th
Annual International Symposium on Computer Architecture,
pages 256–266, May 1992.

[40] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser. Active messages: a mechanism for integrated com-
munication and computation. In Proceedings the 19th An-
nual International Symposium on Computer Architecture,
pages 256–266, Gold Coast, Australia, May 1992.

